Midterm 1

1. (21 points) For all the parts to this problem, let the annual discount rate be 5%.
a) Find the present value of the following cashflow: receive $\$ 10$ every year for 30 years with the first payment being 10 years from now.

Answer: $10 / .05^{*}\left(1-(1.05)^{\wedge}-30\right) / 1.05^{\wedge} 9=\$ 99.09$
b) Find the present value of the following cashflow: receive $\$ 10 \mathrm{~m}$ now and the same amount a year from today and pay $\$ 3 \mathrm{~m}$ a year forever with the first payment being a year from today.

Answer: $10 \mathrm{~m}+10 \mathrm{~m} / 1.05-3 \mathrm{~m} / .05=-\$ 40.48 \mathrm{~m}$
c) Consider the following two cashflows. For cashflow A, you receive $\$ 10$ every year for 5 years with the first payment being today. For cashflow B, you receive x dollars every year forever with the first payment being today. What is the value of x in order for cashflow B to have the same present value as cashflow A?

Answer: $10+10 / .05^{*}\left(1-1.05^{\wedge}-4\right)=x+x / .05=>x=\$ 2.16$
2. (15 points) Today, you're in charge of the nation's finances. Suppose that projected 2015 shortfall is $\$ 418$ billion and projected 2030 shortfall is $\$ 1,345$ billion. In present value terms, how large is the difference of the two budget shortfalls? Assume a 3% discount rate.

Answer: $\left|418 \mathrm{~b} / 1.03^{\wedge} 4-1345 \mathrm{~b} / 1.03^{\wedge} 19\right|=\$ 396$ billion
3. (18 points) Suppose that you borrowed $\$ 20 \mathrm{k}$ for 36 months to buy a car last year at an annual interest rate of 5% compounded monthly.
a) What is the amount of monthly payment?

Answer: $20 \mathrm{k}^{*} 0.05 / 12 /\left(1-(1+0.05 / 12)^{\wedge}-36\right)=\$ 599.42$
b) Calculate the effective annual interest rate for both the car loan and for a rate of 6% compounded quarterly. Which is larger?

Answer: for car loan: $(1+.05 / 12)^{\wedge} 12-1=5.12 \%$
For 6% compounded quarterly: $(1+.06 / 4)^{\wedge} 4-1=6.14 \%$
c) You made monthly payments for the last 12 months. But you still have to make 24 more payments. What is the present value of the remaining payments?

Answer: 599.42/(.05/12)*(1-(1+.05/12)^-24)/(1+.05/12)^12 = \$12,998
(or $\$ 13,663$ for PV at year 12)
4. (15 points) Suppose that you consider some mortgage options. The price of home is \$200k. Calculate your monthly payments for each option: - Option A: 20\% down payment at 15 -year fixed annual rate of 4% - Option B: 15% down payment at 30 -year fixed annual rate of 4.5% - Option C: 10% down payment at 30 -year fixed annual rate of 6%

Answer: Option A: 160000*.04/12/(1-(1+.04/12)^-180) = \$1183.50
Option B: 170000*.045/12/(1-(1+.045/12)^-360) = \$861.37
Option C: 180000*.06/12/(1-(1+0.06/12)^-360) $=\$ 1079$
5. (15 points) Suppose that an account has $\$ 6 \mathrm{~m}$ now. The money is invested and obtains a return of 2%. Your business projections are that in year one you take out $\$ 2 \mathrm{~m}$, in year two you take out $\$ 0.7 \mathrm{~m}$, in year three you add $\$ 1 \mathrm{~m}$ to the account, and in year four you add $\$ 4 \mathrm{~m}$ to the account. Calculate the amount of money in the account a year from now, two years from now, three years from now, and four years from now.

Answer:
Just after the interest payment and before the external transaction
Year $1 \$ 6.12 \mathrm{~m}$
Year $2 \$ 4.2024 \mathrm{~m}$
Year $3 \$ 3.5724 \mathrm{~m}$
Year $4 \$ 4.6639 \mathrm{~m}$

Just after the external transaction
Year 1 \$4.12m
Year $2 \$ 3.5024 \mathrm{~m}$
Year $3 \$ 4.5724 \mathrm{~m}$
Year $4 \$ 8.6639 \mathrm{~m}$
6. (16 points) Consider a 30 -year mortgage with a 5% interest rate and a 20% down payment. If you can afford a $\$ 1000$ monthly payment, how expensive a house can you buy?

Answer: $1000=x^{*} 0.05 / 12 /\left(1-(1+.05 / 12)^{\wedge}-360\right)=>x=186280$
You can afford at most $\mathrm{x} / 0.8=\$ 232,850$

